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Abstract—In this paper we study the validity of the usual
convolution sum sampling representation of linear time-invariant
(LTI) systems. We consider continuous input signals with finite
energy that are absolutely integrable and vanish at infinity. Even
for these benign signals, the convolution sum does not always
converge. There exist LTI systems and signals such that the
convolution sum diverges even in a distributional sense. This
result shows that the practice of multiplying a signal with a Dirac
comb and convolving subsequently with the impulse response of
the LTI system is not valid for this signal space. We further fully
characterize the LTI systems for which we have convergence
for all signals in the space, and establish a connection between
pointwise, uniform, and distributional convergence. In particular,
we show that the convolution sum converges in a distributional
sense if and only it converges in a classical pointwise sense.
Hence, for this signal space, nothing can be gained by treating
the convergence in a distributional sense.

Index Terms—Linear time-invariant system, convolution sum,
tempered distribution, divergence

I. INTRODUCTION

L INEAR time-invariant (LTI) systems are often used in
signal processing applications [1]–[4]. For bandlimited

input signals f with finite energy and stable LTI systems T ,
the system output Tf can be computed using the frequency
domain representation of the LTI system

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω, t ∈ R,

where hT = T (sinc) denotes the response of the system T to
the sinc function. When dealing with bandlimited signals we
can assume, without loss of generality, that the bandwidth is
π, because any signal with a bandwidth other than π can be
scaled to have this bandwidth. Another representation of the
stable LTI system is given by the convolution sum sampling
representation

(Tf)(t) =
∞∑

k=−∞

f(k)hT (t− k), t ∈ R, (1)

which needs only the samples {f(k)}k∈Z of the input signal
f . For bandlimited signals f with finite energy, this series
converges globally uniformly. However, sometimes the rep-
resentation (1) is used in a much wider generality for other
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signal spaces. Then, it is known that the convergence of (1)
can be problematic [5]–[8].

In this paper we study the convergence behavior of (1) for
signals f in C = C0(R) ∩ L1(R). The precise definitions
of C0(R) and L1(R) will follow in the next section. We
show that the series in (1) does not necessarily converge,
even if the convergence is treated in a distributional setting.
More precisely, there exist stable LTI systems T such that (1)
diverges for certain signals f ∈ C. However, if, for a given
stable LTI system, the series (1) converges for all f ∈ C, then
it converges even globally uniformly for all f ∈ C.

The outline of the paper is as follows. After fixing no-
tations and introducing distributions in Sections II and III,
respectively, we give a motivation in Section IV. In Section V
we present a necessary and sufficient condition for pointwise
and uniform convergence. Then, in Section VII, we show that
the same condition is sufficient and necessary for convergence
in a distributional setting. Finally, we discuss the size of the
set of systems and signals for which we have divergence in
Section VI for classical divergence and in Section VIII for
distributional divergence.

II. NOTATION

By c0 we denote the set of all sequences that vanish at
infinity. For Ω ⊆ R, let Lp(Ω), 1 ≤ p < ∞, be the space of
all measurable, pth-power Lebesgue integrable functions on
Ω, with the usual norm ‖ · ‖p, and L∞(Ω) the space of all
functions for which the essential supremum norm ‖ · ‖∞ is
finite. C(Ω), equipped with the supremum norm, is the space
of continuous functions on Ω. By C0(R) we denote the Banach
space of all continuous functions on R that vanish at infinity.
The norm of this space is given by ‖f‖C0(R) = maxt∈R|f(t)|.

Let C = C0(R) ∩ L1(R). Equipped with the norm
‖f‖C = max{‖f‖C0(R), ‖f‖L1(R)}, C becomes a separable
Banach space. For all f ∈ C we have

∫∞
−∞|f(t)|2 dt ≤

‖f‖C0(R)
∫∞
−∞|f(t)| dt < ∞, which shows that f ∈ L2(R),

and consequently C ⊂ L2(R). That is, all f ∈ C have
finite energy. Let f̂ = Ff denote the Fourier transform of
a function f , where f̂ is to be understood in the distributional
sense. According to the Riemann–Lebesgue lemma, we have
lim|t|→∞|f̂(t)| = 0, i.e., f̂ ∈ C0(R), for all f ∈ C, which
shows that the Fourier transform of functions in C has nice
properties.

The Bernstein space Bpσ , σ > 0, 1 ≤ p ≤ ∞, consists of
all functions of exponential type at most σ, whose restriction
to the real line is in Lp(R) [9, p. 49]. The norm for Bpσ is
given by the Lp-norm on the real line. A function in Bpσ
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is called bandlimited to σ. By PWp
σ , 1 ≤ p ≤ ∞, we

denote the Paley–Wiener space of functions f with a repre-
sentation f(z) = 1/(2π)

∫ σ
−σ g(ω) eizω dω, z ∈ C, for some

g ∈ Lp[−σ, σ]. If f ∈ PWp
σ then g(ω) = f̂(ω). The norm for

PWp
σ is given by ‖f‖PWp

σ
= (1/(2π)

∫ σ
−σ|f̂(ω)|p dω)1/p.

PW2
σ is the frequently used space of bandlimited functions

with finite energy.

III. DISTRIBUTIONS

Distributions are continuous linear functionals on a space
of test functions. Two common test functions spaces are
D and S. D is the space of all functions φ : R → C
that have continuous derivatives of all orders and are zero
outside some finite interval. D′ denotes the dual space of D,
i.e., the space of all distributions that can be defined on D.
The Schwartz space S consists of all continuous functions
φ : R→ C that have continuous derivatives of all orders and
fulfill supt∈R|taφ(b)(t)| <∞ for all a, b ∈ N0 = N ∪ {0}. S ′
denotes the dual space of S. In this paper we will consider
the convergence in S ′. A nice property of S is that the Fourier
transform maps S onto itself, i.e., we have FS = S. Clearly,
we have ‖φ‖∞ <∞ and ‖φ‖1 <∞ for all φ ∈ S. In contrast
to S, the Fourier transform of functions in D is not necessarily
again in D. Hence, it is problematic to define the Fourier
transform for D′.

Typical examples of distributions in S ′ are the Dirac delta
function δ, the derivatives of the Dirac delta function δ(l),
l ≥ 1, all finite linear combinations of distributions, and the
Dirac comb X(t) =

∑∞
k=−∞ δ(t− k).

For a locally integrable functions g we can define the linear
functional

φ 7→
∫ ∞
−∞

g(t)φ(t) dt (2)

on the space D. It can be proved that this functional is
continuous and thus defines a distribution [10]. If g further
fulfills

∫∞
−∞|g(t)|(1+|t|)−m dt <∞ for some m ≥ 0 then (2)

defines also a continuous linear functional on S. Distributions
of the type (2) are called regular distributions.

A sequence of distributions {fk}k∈N in S ′ is said to
converge in S ′ if for every φ ∈ S the sequence of numbers
{fkφ}k∈N converges. Thus, a sequence of regular distributions,
which is induced by a sequence of functions {gk}k∈N accord-
ing to (2), converges in S ′ if for every φ ∈ S the sequence
of numbers {

∫∞
−∞ gk(t)φ(t) dt}k∈N converges. For further

details about distributions, and for a definition of convergence
in the test spaces, we would like to refer the reader to [10].

IV. MOTIVATION

Before we start motivating our investigations, we review
some facts about linear time-invariant (LTI) systems. A linear
system T called time-invariant if (Tf( · −a))(t) = (Tf)(t−a)
for all input signals f and all t, a ∈ R. For each hT ∈ PW∞π
the convolution integral

(Tf)(t) =

∫ ∞
−∞

f(τ)hT (t− τ) dτ, t ∈ R, (3)

defines a LTI system on the space C. Since C ⊂ L1(R),
this integral is even absolutely convergent for all f ∈ C.
Moreover, since C ⊂ L2(R) and PW∞π ⊂ PW

2
π , we can

use the representation

(Tf)(t) =
1

2π

∫ π

−π
f̂(ω)ĥT (ω) eiωt dω, t ∈ R, (4)

and Plancherel’s theorem to obtain

‖Tf‖2PW2
π

=
1

2π

∫ π

−π
|f̂(ω)|2|ĥT (ω)|2 dω

≤ ‖hT ‖2PW∞π ‖f̂‖
2
L∞[−π,π]

≤ ‖hT ‖2PW∞π ‖f‖
2
1

≤ ‖hT ‖2PW∞π ‖f‖
2
C

for all f ∈ C and all hT ∈ PW∞π . This shows that for all
hT ∈ PW∞π , T as defined in (3), is a bounded linear operator
from C into PW2

π . In this paper we only consider stable LTI-
systems C → PW2

π with hT ∈ PW∞π .
A typical example of a LTI system is a bandpass filter,

i.e., a system with ĥT (ω) = 1[ω1,ω2](ω), ω ∈ [−π, π], where
−π ≤ ω1 < ω2 ≤ π. 1A denotes the indicator function of the
set A.

For f ∈ PW2
π we have, in addition to the convolu-

tion integral representation (3) and the frequency domain
representation (4), the following convolution sum sampling
representation

(Tf)(t) =
∞∑

k=−∞

f(k)hT (t− k), t ∈ R, (5)

where the series in (5) converges uniformly on the whole
real axis. However, the representation (5) is often also used
for larger signal spaces, and it is assumed that it is still
valid, at least when convergence is treated in the sense of
distributions. This, however, is not always the case, as it has
been shown in [7], [8]. In [8] convolution sum sampling
system representations were analyzed for signals in PW1

π

and non-equidistant sampling patterns, and it was shown that,
for every sampling pattern that is a complete interpolating
sequence and all t ∈ R, there exists a stable LTI system
T and a signal f ∈ PW1

π , such that the corresponding
convolution sum approximation process diverges at t. In [7] the
distributional behavior of (3) and (5) was analyzed for signals
in PW1

π , and divergence for certain signals and systems was
established.

In many signal processing books and publications distri-
butions are used [1]–[3], [11]–[16]. Distribution have proven
to be a helpful tool to get new insights into a problem.
However, often distributions are used in a heuristic fashion
rather than in a clean mathematical way. Then computations
and manipulations lack a proper mathematical justification.
In many cases, the performed calculations are nevertheless
correct and can be mathematically justified in a distributional
setting. However, sometimes, those manipulations are mislead-
ing or even wrong, because a proper mathematical justification
cannot be established. This situation is very problematic,
because in a theory that contains inconsistencies, any statement
can be proved true.
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In the present work we analyze the convolution sum system
representation (5) for signals f ∈ C and stable LTI systems
T : C → PW2

π , and show that even for this benign signal
space there are convergence problems.

For f ∈ C, the expressions in the equation

fX(t) = f(t) ·X(t)

= f(t) ·
∞∑

k=−∞

δ(t− k)

=
∞∑

k=−∞

f(k)δ(t− k)

are all well-defined distributions in S ′. The convergence of the
series in the above equation has to be treated in the sense of
distributions as described at the end of Section III. Moreover,
every function hT ∈ PW∞π is a regular distribution in S ′.
Formally, often the following manipulation

“(Tf)(t) = (fX ∗ hT )(t) =
∞∑

k=−∞

f(k)hT (t− k)” (6)

is performed to obtain the system output Tf , and it is
assumed that these expressions are meaningful, at least in a
distributional setting. However, it is not clear if the convolution
fX ∗hT is well-defined. A natural approach is to approximate
fX by a finite sum

fX,N (t) =

N∑
k=−N

f(k)δ(t− k).

fX,N is a distribution with finite support. Consequently, the
convolution

(fX,N ∗ hT )(t) =
N∑

k=−N

f(k)hT (t− k)

exists, and even defines a classical continuous function. How-
ever, a priori it is unclear whether the sequence of functions
{fX,N ∗ hT }N∈N converges in S ′. In the signal processing
literature, starting from classical books like [14], [15], [17],
the question of convergence of this sequence is not properly
treated.

Example 1. The simplest example of a systems approximation
process, having the form (5), is the bandlimited interpolation

fBL(t) =
∞∑

k=−∞

f(k)
sin(π(t− k))

π(t− k)
, (7)

which is obtained when T is the identity (cf. [15, p. 52] and
[2, p. 144]). This special case has already been studied in [18],
where the distributional behavior was analyzed for signals in
C0(R). We will see in Section VII that the series in (7) is not
always well-defined, because there exist signals in C such that
(7) diverges even in S ′.

In this work we will analyze the following questions for the
practically relevant signal space C:

1) When does the series in (5) converge classically?
2) When does the series in (5) converge in a distributional

sense in S ′?

Often, the theory of distributions is used, without any
restriction on the signal spaces, as a formal technique to justify
the convergence and hence the existence of certain mathe-
matical objects, for example, convolution integrals, sums, etc.
If it is possible to show divergence phenomena for a rather
small signal space that consists only of classically well-defined
signals, then it is clear that for any larger signal space that
contains these nice signals, we have divergence as well. In
our case the space C consists of continuous signals, vanishing
at infinity, that are absolutely, and hence also square integrable.
We show that there exist signals in C for which the series in (5)
diverges, both classically, as well as distributionally. Further,
we prove for the signal space C that (5) converges in S ′ if
and only if it converges classically. Hence, a distributional
treatment does not extend the validity of the expression (5),
and is not necessary for the signal space C.

Finally, we list several facts about C, which illustrate the
nice properties of this space:

1) Since we consider sampling expressions, it is necessary
that the sampling operation, i.e., the point evaluation
operator, is well-defined. Clearly, this is the case for
continuous signals.

2) In distribution theory, generally no assumption is made
about the asymptotic behavior of the signals. Neverthe-
less, we have lim|t|→∞ f(t) = 0, which is a natural and
relevant assumption for applications.

3) The property f ∈ L1(R) for signals in C implies that the
Fourier transform integral converges absolutely. There-
fore, the Fourier transform is defined straightforwardly
by the Fourier transform integral, and the use of the L2-
definition is not necessary. Moreover, f̂ is continuous and
lim|ω|→∞ f̂(ω) = 0, according to the Riemann–Lebesgue
lemma.

4) Since
∫∞
−∞|f(t)|2 dt ≤ ‖f‖C0(R)

∫∞
−∞|f(t)| dt, we see

that signals in C are also in L2(R), i.e., every signal f ∈ C
has finite energy.

V. CONVERGENCE IN THE CLASSICAL SENSE

We start with proving the following theorem about point-
wise convergence of the system approximation series.

Theorem 1. Let hT ∈ PW∞π . Then the series
∞∑

k=−∞

f(k)hT (t− k) (8)

converges for all t ∈ R and all f ∈ C if and only if hT ∈ B1π .

Theorem 1 gives a full characterization when we have
pointwise convergence for the whole space C and all t ∈ R.
Interestingly, pointwise convergence for all f ∈ C is equivalent
to uniform convergence for all f ∈ C.

Corollary 1. Let hT ∈ PW∞π . If the series
∞∑

k=−∞

f(k)hT (t− k) (9)

converges pointwise for all t ∈ R and all f ∈ C then it
converges globally uniformly for all f ∈ C.
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Proof of Corollary 1. Let hT ∈ PW∞π , and assume that the
series (9) converges for all t ∈ R and all f ∈ C. Then,
according to Theorem 1, we have hT ∈ B1π . For N2 > N1

it follows that∣∣∣∣∣
N2∑

k=−N2

f(k)hT (t− k)−
N1∑

k=−N1

f(k)hT (t− k)

∣∣∣∣∣
=

∣∣∣∣∣∣
∑

N1+1≤|k|≤N2

f(k)hT (t− k)

∣∣∣∣∣∣
≤
(

max
|k|≥N1+1

|f(k)|
) ∞∑
k=−∞

|hT (t− k)|

≤ (1 + π)‖hT ‖B1
π

max
|k|≥N1+1

|f(k)|,

because

∞∑
k=−∞

|hT (t− k)| ≤ (1 + π)

∫ ∞
−∞
|hT (τ)| dτ

according to Nikol’skiı̆’s inequality (see Theorem 6 in the
appendix). Hence, for all ε > 0 there exists an N0 = N0(ε)
such that

max
t∈R

∣∣∣∣∣
N2∑

k=−N2

f(k)hT (t− k)−
N1∑

k=−N1

f(k)hT (t− k)

∣∣∣∣∣ < ε

for all N1, N2 ≥ N0(ε).

For the proof of Theorem 1 we need two lemmas.

Lemma 1. Let a ∈ c0. Then there exists an fa ∈ C such that

fa(k) = ak, k ∈ Z,

and

‖fa‖C ≤ ‖a‖c0 .

Proof. For k ∈ Z, let lk = 2−|k|/3 and define

dk(t) =

{
0, |t− k| ≥ lk,
1− l−1k |t− k|, |t− k| < lk.

Let

fa(t) =
∞∑

k=−∞

akdk(t), t ∈ R. (10)

Since all dk, k ∈ Z, have pairwise disjoint support, the
convergence of the series in (10) is obvious. Clearly, we have
fa(k) = ak for all k ∈ Z. Further, we have∫ ∞

−∞
|fa(t)| dt ≤ ‖a‖c0

∫ ∞
−∞

∞∑
k=−∞

|dk(t)| dt

= ‖a‖c0 ,

because ∫ ∞
−∞

∞∑
k=−∞

|dk(t)| dt =
∞∑

k=−∞

∫ ∞
−∞

dk(t) dt

=
∞∑

k=−∞

lk

=
1

3

∞∑
k=−∞

1

2|k|

= 1.

Moreover, we have

|fa(t)| ≤
∞∑

k=−∞

|ak||dk(t)| ≤ ‖a‖c0

and
lim
|t|→∞

|fa(t)| = 0.

Hence, it follows that fa ∈ C with ‖fa‖C ≤ ‖a‖c0 .

The second needed lemma is stated next.

Lemma 2. Let hT ∈ PW∞π , t ∈ R, and

TN,tf = (TNf)(t) =
N∑

k=−N

f(k)hT (t− k).

Then we have

‖TN,t‖ = sup
‖f‖C≤1

|(TNf)(t)| =
N∑

k=−N

|hT (t− k)|.

Proof. Let hT ∈ PW∞π and t ∈ R be arbitrary but fixed. We
have

|(TNf)(t)| ≤
N∑

k=−N

|f(k)||hT (t− k)|

≤ ‖f‖C
N∑

k=−N

|hT (t− k)|,

which shows that

‖TN,t‖ ≤
N∑

k=−N

|hT (t− k)|. (11)

For N ∈ N, let

a
(N)
k =

{
sgn(hT (t− k)), |k| ≤ N,
0, |k| > N.

According to Lemma 1, there exists a function gN ∈ C such
that gN (k) = a

(N)
k , k ∈ Z, and ‖gN‖C ≤ 1. We have

(TNgN )(t) =
N∑

k=−N

gN (k)hT (t− k)

=
N∑

k=−N

sgn(hT (t− k))hT (t− k)

=
N∑

k=−N

|hT (t− k)|,
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which shows that

‖TN,t‖ ≥
N∑

k=−N

|hT (t− k)|. (12)

Combining (11) and (12) gives the assertion of the lemma.

Now we are in the position to prove Theorem 1.

Proof of Theorem 1. “⇒”: Let t ∈ R be arbitrary but fixed.
Since the series (8) converges for all f ∈ C, it follows that

sup
N∈N
|TN,tf | <∞

for all f ∈ C. Hence, according to the Banach–Steinhaus
theorem (see Theorem 5 in the appendix), we have

sup
N∈N
‖TN,t‖ <∞,

which in turn implies that
∞∑

k=−∞

|hT (t− k)| <∞,

according to Lemma 2.
From

∞∑
k=−∞

|hT (t− k)| <∞

for all t ∈ R we can conclude that
∞∑

k=−∞

|hT (k)| = C1 <∞

and
∞∑

k=−∞

∣∣∣∣hT (1

2
− k
)∣∣∣∣ = C2 <∞,

and consequently that
∞∑

k=−∞

∣∣∣∣hT (k2
)∣∣∣∣ = C1 + C2 <∞.

Let

ĝ(ω) =


ω/π + 2, −2π ≤ ω < −π,
1, −π ≤ ω ≤ π,
−ω/π + 2, π ≤ ω < 2π.

Then we have

hT (t) =
∞∑

k=−∞

hT

(
k

2

)
g

(
t− k

2

)
, t ∈ R. (13)

Further, due to the definition of ĝ, we have

|g(t)| ≤ C3

1 + |t|2
,

and it follows that
∞∑

l=−∞

|g(t− l)| ≤ C3

∞∑
l=−∞

1

1 + |t− l|2
≤ C4,

where the constant C4 is independent of t. From (13) we see
that

|hT (t− l)| ≤
∞∑

k=−∞

∣∣∣∣hT (k2
)∣∣∣∣ ∣∣∣∣g(t− l − k

2

)∣∣∣∣
and it follows
∞∑

l=−∞

|hT (t− l)| ≤
∞∑

k=−∞

∣∣∣∣hT (k2
)∣∣∣∣ ∞∑

l=−∞

∣∣∣∣g(t− l − k

2

)∣∣∣∣ .
Since

∞∑
l=−∞

∣∣∣∣g(t− l − k

2

)∣∣∣∣ ≤ C4,

we obtain
∞∑

l=−∞

|hT (t− l)| ≤ C4

∞∑
k=−∞

∣∣∣∣hT (k2
)∣∣∣∣ = C4(C1 + C2).

(14)
The right-hand side of (14) is independent of t and thus it
follows that∫ ∞
−∞
|hT (t)| dt =

∫ 1

0

∞∑
l=−∞

|hT (t− l)| dt ≤ C4(C1 + C2),

which shows that hT ∈ B1π .
“⇐”: If hT ∈ B1π , then we have

∞∑
k=−∞

|hT (t− k)| ≤ (1 + π)

∫ ∞
−∞
|hT (τ)| dτ, (15)

according to Nikol’skiı̆’s inequality (see Theorem 6 in the
appendix), and it follows that

∞∑
k=−∞

|f(k)hT (t− k)| ≤ ‖f‖C
∞∑

k=−∞

|hT (t− k)|

≤ ‖f‖C(1 + π)

∫ ∞
−∞
|hT (τ)| dτ,

which shows that the series (8) is absolutely convergent and
hence convergent.

VI. SIZE OF THE DIVERGENCE SET I

From Theorem 1 we obtain a corollary about the size of the
set of stable LTI systems for which divergence can occur. To
state the theorem, we need to introduce the concept of Baire
categories.

A subset M of a Banach space X is said to be nowhere
dense in X if the interior of the closure ofM is empty.M is
said to be of first category (or meager) if M is the countable
union of sets each of which is nowhere dense in X . M is
said to be of second category (or nonmeager) if is not of the
first category. The complement of a set of the first category is
called a residual set. Topologically, sets of first category may
be considered as “small”. Accordingly, residual sets, being the
complements of sets of first category, can be considered as
“large”. In a complete metric space any residual set is dense
and a set of second category, due to Baire’s theorem [19].
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Corollary 2. The set of all stable LTI systems hT ∈ PW∞π ,
for which there exists an f ∈ C and a t ∈ R such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f(k)hT (t− k)

∣∣∣∣∣ =∞, (16)

is a residual set in PW∞π .
Moreover, for each hT from this residual set, the set of

signals f ∈ C, for which there exists a t ∈ R such that (16)
is true, is a residual set in C.

Corollary 2 shows that divergence of the series (16) is not
a rare event that occurs only for few signals and systems but,
from a topological point of view, a rather frequent event.

Proof of Corollary 2. First, we establish the fact that the set

D =
{
hT ∈ PW∞π : hT 6∈ B1π

}
is a residual set in PW∞π . Since B1π ⊂ PW

∞
π , it is sufficient to

show that B1π is a set of first category in PW∞π . We assume
that B1π is not a set of first category, i.e., that B1π is a set
of second category, and construct a contradiction. For hT ∈
PW∞π , consider the functionals

FN (hT ) =

∫ N

−N
|hT (t)| dt.

For each N ∈ N, FN : PW∞π → R is a continuous functional.
We have

lim
N→∞

FN (hT ) <∞

for hT ∈ B1π . Hence, the generalized uniform boundedness
principle (see Theorem 4 in the appendix for more details)
implies that there exists an open ball Uε̃(h̃T ) in PW∞π and a
constant C5 such that

lim
N→∞

FN (hT ) ≤ C5

for all hT ∈ Uε̃(h̃T ). That is, we have∫ ∞
−∞

hT (t) dt ≤ C5

for all hT ∈ Uε̃(h̃T ). For all h(1)T ∈ PW
∞
π with ‖h(1)T ‖PW∞π <

ε̃ we have h(2)T := h̃T + h
(1)
T ∈ Uε̃(h̃T ). It follows that∫ ∞

−∞
|h(2)T (t)| dt ≤ C5,

and consequently that∫ ∞
−∞
|h(1)T (t)| dt =

∫ ∞
−∞
|h(2)T (t)− h̃T (t)| dt

≤
∫ ∞
−∞
|h(2)T (t)| dt+

∫ ∞
−∞
|h̃T (t)| dt

≤ 2C5 (17)

for all h(1)T ∈ PW∞π with ‖h(1)T ‖PW∞π < ε̃. Now let h(3)T ∈
PW∞π be arbitrary and set

h
(4)
T =

ε̃

2‖h(3)T ‖PW∞π
h
(3)
T .

Then we have ‖h(4)T ‖PW∞π = ε̃/2 < ε̃. It follows that∫ ∞
−∞
|h(3)T (t)| dt =

2‖h(3)T ‖PW∞π
ε̃

∫ ∞
−∞
|h(4)T (t)| dt

≤
4C5‖h(3)T ‖PW∞π

ε̃
, (18)

for all h(3)T ∈ PW
∞
π , where we used (17) in the last inequality.

However, for hLP = sinc ∈ PW∞π , we have∫ ∞
−∞
|hLP(t)| dt =∞,

which is a contradiction to (18). This shows that B1π is a set of
first category in PW∞π , or, equivalently, that D is a residual
set in PW∞π .

Next, we show that hT 6∈ B1π implies that there exists an
f ∈ C and t ∈ R such that (16) holds. Let hT 6∈ B1π be
arbitrary but fixed. Then there exists a t∗ ∈ R such that

∞∑
k=−∞

|hT (t∗ − k)| =∞,

and Lemma 2 shows that supN∈N‖TN,t∗‖ = ∞. Using the
Banach–Steinhaus theorem (see Theorem 5 in the appendix)
we obtain that there exists a signal f∗ ∈ C such that
supN∈N|TN,t∗f∗| =∞.

Now we prove the second statement. For every hT∗ ∈ D,
there exists a signal f∗ ∈ C and a t∗ ∈ R such that

lim sup
N→∞

∣∣∣∣∣
N∑

k=−N

f∗(k)hT∗(t∗ − k)

∣∣∣∣∣ =∞. (19)

For the functional T∗N,t∗ : C → C, defined by

T∗N,t∗f =
N∑

k=−N

f(k)hT∗(t∗ − k)

we therefore have supN∈N‖T∗N,t∗‖ =∞. Application of the
Banach–Steinhaus theorem (see Theorem 5 in the appendix)
shows that the set of signals f ∈ C for which we have
supN∈N|T∗N,t∗f | =∞ is a residual set.

VII. CONVERGENCE IN THE DISTRIBUTIONAL SENSE

In Section V we have seen that the convolution sum (5)
diverges pointwise for certain signals f ∈ C. In this section
we study the distributional behavior of

∞∑
k=−∞

f(k)hT (t− k) (20)

in S ′ for hT ∈ PW∞π and f ∈ C. Let

(TNf)(t) =
N∑

k=−N

f(k)hT (t− k).

According to the definition of distributional convergence, the
sequence {TNf}N∈N converges in S ′ if and only if{∫ ∞

−∞
(TNf)(t)φ(t) dt

}
N∈N

(21)
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converges for all φ ∈ S . We consider the continuous linear
functional GN,φ,hT : C → C, defined by

GN,φ,hT f =

∫ ∞
−∞

(TNf)(t)φ(t) dt

=

∫ ∞
−∞

N∑
k=−N

f(k)hT (t− k)φ(t) dt

=
N∑

k=−N

f(k)

∫ ∞
−∞

hT (t− k)φ(t) dt︸ ︷︷ ︸
=ck(hT ,φ)

.

Hence {TNf}N∈N converges in S ′ if and only if
{GN,φ,hT f}N∈N converges for all φ ∈ S . Using the same
calculations as in the proof of Lemma 2, it can be shown that

‖GN,φ,hT ‖ =
N∑

k=−N

|ck(hT , φ)|. (22)

This observation leads to the next lemma.

Lemma 3. Let hT ∈ PW∞π . Then
∞∑

k=−∞

f(k)hT (t− k) (23)

converges in S ′ for all f ∈ C if and only if for all φ ∈ S we
have

∞∑
k=−∞

|ck(hT , φ)| <∞. (24)

Proof. “⇒”: Let hT ∈ PW∞π and assume that (23) converges
in S ′ for all f ∈ C. Then, for all f ∈ C, the sequence
{GN,φ,hT f}N∈N converges for all φ ∈ S. This implies that

sup
N∈N
|GN,φ,hT f | <∞

for all φ ∈ S and all f ∈ C. Using the Banach–Steinhaus
theorem (see Theorem 5 in the appendix), we see that

sup
N∈N
‖GN,φ,hT ‖ <∞

for all φ ∈ S, which in turn implies, using (22), that
∞∑

k=−∞

|ck(hT , φ)| <∞.

for all φ ∈ S.
“⇐”: Let hT ∈ PW∞π . Further, let φ ∈ S and f ∈ C be

arbitrary but fixed. For N > M we have

|GN,φ,hT f −GM,φ,hT f | =

∣∣∣∣∣∣
∑

M<|k|≤N

f(k)ck(hT , φ)

∣∣∣∣∣∣
≤ ‖f‖C

∑
M<|k|

|ck(hT , φ)|.

Since, by assumption, we have (24), and consequently that

lim
M→∞

∑
M<|k|

|ck(hT , φ)| = 0,

we see that {GN,φ,hT f}N∈N is a Cauchy sequence in R, and
therefore convergent. Because φ ∈ S and f ∈ C were chosen
arbitrarily, and because S ′ is closed under convergence [10,
p. 104], we have established the convergence of (23) in S ′ for
all f ∈ C.

Using the previous lemma, we can prove Theorem 2, which
gives a complete characterization of the convergence of the
series (20) in S ′ for all f ∈ C. Interestingly, the condition
hT ∈ B1π is exactly the same as in the case of pointwise
divergence.

Theorem 2. Let hT ∈ PW∞π . Then the series

∞∑
k=−∞

f(k)hT (t− k) (25)

converges in S ′ for all f ∈ C if and only if hT ∈ B1π .

Proof. From Lemma 3 we know that (25) converges in S ′ for
all f ∈ C if and only if we have (24) for all φ ∈ S. Hence, it
suffices to prove that we have (24) for all φ ∈ S if and only
if hT ∈ B1π .

“⇒”: Assume that (24), i.e.

∞∑
k=−∞

|ck(hT , φ)| <∞ (26)

is true for all φ ∈ S. Let τ ∈ R be arbitrary but fixed, and
choose a φ∗ ∈ S such that φ̂∗(ω) = e−iωτ , |ω| ≤ π. Such
a function can be easily constructed in the frequency domain
by multiplying an infinitely often differentiable function û(ω)
that equals one for |ω| ≤ π with e−iωτ . Then we have

ck(hT , φ∗) =

∫ ∞
−∞

hT (t− k)φ∗(t) dt

=

∫ ∞
−∞

1

2π

∫ π

−π
ĥT (ω) eiω(t−k) dω φ∗(t) dt

=
1

2π

∫ π

−π
ĥT (ω) e−iωk

∫ ∞
−∞

φ∗(t) eiωt dt dω

=
1

2π

∫ π

−π
ĥT (ω) e−iωk φ̂∗(−ω) dω

=
1

2π

∫ π

−π
ĥT (ω) e−iωk eiωτ dω

= hT (τ − k) (27)

for all k ∈ Z, and it follows from (26) that

∞∑
k=−∞

|hT (τ − k)| <∞.

Since τ ∈ R was arbitrary, it follows by the same line of
reasoning as in the proof of Theorem 1 that hT ∈ B1π .
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“⇐”: Now assume that hT ∈ B1π . Then we have
∞∑

k=−∞

|ck(hT , φ)| ≤
∞∑

k=−∞

∫ ∞
−∞
|hT (t− k)||φ(t)| dt

=

∫ ∞
−∞
|φ(t)|

∞∑
k=−∞

|hT (t− k)| dt

≤
∫ ∞
−∞
|φ(t)|(1 + π)‖hT ‖B1

π
dt

= (1 + π)‖hT ‖B1
π
‖φ‖1 <∞,

where we again used Nikol’skiı̆’s inequality (see Theorem 6
in the appendix) in the second to last line.

We present several examples of stable LTI systems T , for
which we have hT 6∈ B1π , next. For those systems there exists
a signal f ∈ C such that the series (25) diverges even in a
distributional setting.

Example 2. Let 0 < σ ≤ π. For the ideal low-pass filter with
ĥLP(ω) = 1[−σ,σ](ω), ω ∈ [−π, π] we have hLP = sin(σ · )

π · 6∈
B1π .

Example 3. For the Hilbert transform with ĥH(ω) =

−i sgn(ω) we have hH = 1−cos(π · )
π · 6∈ B1π .

Choosing σ = π in Example 2 gives, as a special case, the
Shannon sampling series

∞∑
k=−∞

f(k)
sin(π(t− k))

π(t− k)
. (28)

For the Shannon sampling series it is easy to explicitly
construct a signal f ∈ C such that (28) diverges for all
t ∈ R \ Z. We follow a construction which was presented
in [20]. For k ∈ Z, let

ak =

{
(−1)k
log 1+k , k ≥ 1,

0, k ≤ 0.

In [20] it was proved that

lim
N→∞

∣∣∣∣∣
N∑

k=−N

ak
sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞ (29)

for all t ∈ R \ Z. Using the procedure that was used in the
proof of Lemma 1, we can construct a signal f∗ ∈ C with
f(k) = ak, k ∈ Z. Clearly, for this f∗ we have the divergence

lim
N→∞

∣∣∣∣∣
N∑

k=−N

f∗(k)
sin(π(t− k))

π(t− k)

∣∣∣∣∣ =∞

for all t ∈ R \ Z, because of (29).
The previous results and examples show that there are

stable LTI systems T and signals f ∈ C such that the
sampling representation (20) of the system diverges even in
S ′. This shows that using a distributional approach here does
not circumvent the convergence problems. Moreover, the next
theorem shows that the sampling representation (20) converges
in the classical pointwise sense for all f ∈ C if and only if it
converges in the distributional sense for all f ∈ C. Hence,

with respect to convergence, nothing is gained by using a
distributional setting.

Theorem 3. Let hT ∈ PW∞π . The series
∞∑

k=−∞

f(k)hT (t− k) (30)

converges in S ′ for all f ∈ C if and only if it converges
pointwise for all t ∈ R and all f ∈ C.

Proof. “⇒”: According to Theorem 2 we have hT ∈ B1π .
Hence, by Theorem 1 the series (30) converges classically for
all t ∈ R and all f ∈ C. “⇐”: According to Theorem 1 we
have hT ∈ B1

π , and Theorem 2 gives the convergence of the
series (30) in S ′ for all f ∈ C..

The previous result can even be strengthened. Distributional
convergence for all f ∈ C is equivalent to global uniform
convergence for all f ∈ C.

Corollary 3. Let hT ∈ PW∞π . If the series
∞∑

k=−∞

f(k)hT (t− k)

converges in S ′ for all f ∈ C then it converges globally
uniformly for all f ∈ C.

Proof. This is a direct consequence of Theorem 3 and Corol-
lary 1.

VIII. SIZE OF THE DIVERGENCE SET II
Similar to Section VI, where we analyzed the size of the

set of stable LTI systems and signals for which we have
divergence in the classical pointwise sense, we can use the
findings from the previous section to derive a result for the
distributional case.

Corollary 4. The set of all stable LTI systems hT ∈ PW∞π ,
for which there exists an f ∈ C and a φ ∈ S such that

lim sup
N→∞

|GN,φ,hT f | =∞, (31)

is a residual set in PW∞π .
Moreover, for each hT from this residual set, the set of

signals f ∈ C for which (31) is true for some φ ∈ S, is a
residual set in C.

Proof. In the proof of Corollary 2, we have shown that the set

D =
{
hT ∈ PW∞π : hT 6∈ B1π

}
is a residual set in PW∞π . By showing that hT 6∈ B1π implies
that (31) holds for some f ∈ C and some φ ∈ S, we complete
the proof of the first statement. Let hT 6∈ B1

π be arbitrary but
fixed. Hence, there exists a t∗ ∈ R such that

∞∑
k=−∞

|hT (t∗ − k)| =∞.

Let φ∗ ∈ S be such that φ̂∗ = e−iωt∗ , |ω| ≤ π. By the same
calculation as in (27), we see that

∞∑
k=−∞

|ck(hT , φ∗)| =∞.
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Thus, according to (22), we have

sup
N∈N
‖GN,φ∗,hT ‖ =∞,

and the application of the Banach–Steinhaus theorem (see
Theorem 5 in the appendix) shows that there exists an f∗ ∈ C
such that

lim sup
N→∞

|GN,φ∗,hT f∗| =∞.

Now we prove the second statement. Let hT∗ ∈ PW
∞
π be

a function from this residual set. Then there exists an f∗ ∈ C
and an φ∗ ∈ S such that

lim sup
N→∞

∣∣GN,φ∗,hT∗ f∗∣∣ =∞

for some φ∗ ∈ S . The Banach–Steinhaus theorem (see
Theorem 5 in the appendix) implies that that the set of signals
f ∈ C for which

lim sup
N→∞

∣∣GN,φ∗,hT∗ f ∣∣ =∞

is a residual set.

IX. DISCUSSION

We have shown that the convolution sum (5) diverges
pointwise for certain systems and signals. Since, for the
considered signal space C, classical pointwise convergence is
equivalent to convergence in a distributional sense, this result
also implies the divergence of the convolution sum (5) in the
sense of distributions for certain systems and signals. Thus,
for the signal space C, the convolution sum cannot be defined
as the limit of the sequence{

N∑
k=−N

f(k)hT (t− k)

}
N∈N

in S ′. However, our theory makes no statement whether
there maybe is a different way to define a “generalized”
convolution sum with meaningful properties as an element of
S ′. Nevertheless, the results in this paper show that the formal
use of distributions, as done in many signal processing books,
is mathematically not justified for the signal space C.

Interestingly, there is a big difference between the conver-
gence behavior of the time-domain convolution integral system
representation (3), the frequency domain representation (4),
and the convolution sum representation (5). While the two
former are absolutely convergent, the latter can be divergent,
even when treated in a distributional setting. Further, it is
worth noting that in a topological sense the divergence of
the convolution sum (5) holds for a large set of systems and
signals, as stated in Corollaries 2 and 4.

APPENDIX

BASICS OF FUNCTIONAL ANALYSIS

Since we employ several concepts from functional analysis,
we summarize the most important facts here.

A linear operator T : X1 → X2, mapping from a Banach
space X1 in to a Banach space X2, is called bounded if there
exists a constant C <∞ such that

‖Tx‖X2
≤ C‖x‖X1

(32)

for all x ∈ X1. The smallest possible constant in (32) is called
operator norm and denoted by ‖T‖X1→X2

. It can be shown that

‖T‖X1→X2
= sup

x∈X1

‖x‖X1
≤1

‖Tx‖X2
.

Let X be a Banach space. By

Uε̃(x̃) = {x ∈ X : ‖x− x̃‖X < ε̃}

we denote the open ball at x with radius ε. A key result in
functional analysis is the uniform boundedness theorem [21,
Theorem 16.2, p. 45].

Theorem 4 (Generalized Uniform Boundedness Theorem).
Let X be a Banach space and X a set of second category
in X . Further, let F be a set of continuous functions mapping
from X into R, and satisfying

sup
F∈F

F (x) <∞ (33)

for all x ∈ X . Then there exists an open ball Uε̃(x̃) in X and
a constant C <∞ such that

F (x) ≤ C

for all x ∈ Uε̃(x̃) and all F ∈ F .

We stated here a slightly more general version of the
theorem, where we require (33) to hold only for a set of second
category instead of the whole space. Nevertheless, the proof
of Theorem 4 is similar to the proof in [21, Theorem 16.2,
p. 45]. The Banach–Steinhaus theorem [22, p. 98] can be seen
as a consequence of the previous theorem.

Theorem 5 (Banach–Steinhaus Theorem). Let X be a Banach
space, Y a normed linear space, and {TN}N∈N a sequence
of bounded linear operators mapping from X into Y . Then
either there exists a C <∞ such that

sup
N∈N
‖TN‖ ≤ C,

or
sup
N∈N
‖TNf‖ =∞

for all f belonging to some residual set in X .

NIKOL’SKIĬ’S INEQUALITY

We state a slightly simplified version Nikol’skiı̆’s inequality
[9, p. 49], which is sufficient for our purposes.

Theorem 6 (Nikol’skiı̆’s Inequality). Let 1 ≤ p ≤ ∞. Then
we have

‖f‖p ≤ sup
t∈R

( ∞∑
k=−∞

|f(t− k)|p
) 1
p

≤ (1 + π)‖f‖p

for all f ∈ Bpπ .
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